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ABSTRACT

The recently proposed instantaneous statistical dimen-
sion is compared to new conditional Rényi entropies.
The motivation for introducing these time-varying com-
plexity measures is the analysis of electroencephalo-
grams for which nonstationarity is an inherent prop-
erty. Experimental data from babies are analyzed us-
ing the proposed complexity measures. The instan-
taneous statistical dimension computation is based on
an adaptive autocorrelation eigenspectrum computa-
tion known as APEX together with a model selection
rule. The conditional Rényi entropies are based on
time-frequency representation of the signal. It is shown
that: 1) the three time-varying complexity measures
account for a component counting property, 2) the in-
stantaneous statistical dimension is the most robust to
Gaussian white noise.

1. INTRODUCTION

An electroencephalographic signal (EEG) is composed
of several types of subsignals, each referring to a par-
ticular state of the brain. The complexity of EEG sig-
nals originates from the huge number of degrees of free-
dom of the central nervous system. Neurons and neu-
ronal networks composing the central nervous system
can behave in an asynchronous or synchronous manner.
Asynchronous activity leads to a more or less contin-
uous background activity, while synchronous activity
leads to rhythmical patterns [1]. We know that bio-
logical neurons can be modeled by a set of nonlinear
differential equations. The coupling of these neurons
results in a complex neuronal network that can ex-
hibit different behaviour like spatio-temporal patterns
or travelling waves. In both cases, the signal recorded

Part of the work has been done at the Signal Processing
Research Centre, QU'T, Brisbane, Australia. p.celka@qut.edu.au

at a particular location often display a nonstationary
behaviour [1].

Recently, it has been proposed to analyse nonsta-
tionary time series with an adaptive principal compo-
nent neural network [2]. A linear neural network is used
to learn and track the eigenvalues A(k) = {\;(k)}, for
i = 1,...,ns and associated eigenvectors e;(k) of a
time-varying covariance matrix of a time series x(k).
A time-varying model selection procedure is then used
to select the most relevant eigenvalues and define the
instantaneous statistical dimension (ISD) m(k,T) (T
is a time-averaging horizon). It is shown in this paper
that m(k, T) actually count the number of signal com-
ponents through time. An other time-varying compo-
nent counting methods is introduced here. It is based
on Rényi conditional entropies computed from time-
frequency signal representation. Such entropy based
time-frequency information measures have been pro-
posed by Williams et al. [3] and further studied by
Flandrin et al. [4]. We propose in this paper to use
conditional entropies to compute an instantaneous en-
tropy of the signal. We use these measures to analyse
EEG signals. It is hoped that these complexity mea-
sures will be usefull for feature extraction in EEG sig-
nal processing and classification. We finally show that
m(k,T) can be used to segment the EEG signal and
detect rhytmical activities. The recursive nature of the
algorithm that compute m(k,T) makes it suitable for
on-line segmentation.

The paper is organized as follows. Section 2 de-
scribes the experimental set-up used for recording the
electroencephalogram (EEG). Section 3 describes the
adaptive method to estimate the eigenvalues A(k) and
defines the ISD. Section 4 presents the conditional Rényi
entropies. Section 5 shows some numerical examples
and Section 6 experiment these new time-varying com-
plexity measures on EEG signals. Section 7 concludes
this paper.
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2. EXPERIMENTAL SETUP

Five to twenty EEG signals were measured on four ba-
bies using electrodes (Ag-AgCl electrodes flushed with
conductive gel and adhered by tape) attached to the
skin of the newborn. The electrode placement agrees
with the American EEG Society standards. Slow base-
line fluctuations due to baby movement have been re-
moved by using a 2nd-order high-pass Butterworth fil-
ter with a cut-off frequency of 0.1 Hz. These signals
were amplified and digitized using either the Amlab®
or Medelec® (Oxford Instruments) Software/Hardware
environment. The sampling frequency was set to Fs =
256 Hz. EEG signals were then sub-sampled at 40 Hz.

The data acquisitions were performed at the Royal
Women Hospital and Royal Children Hospital, Bris-
bane. Babies were showing electrical seizure activity
as labelled by a neurologist from the Neurosciences De-
partment at the Royal Children’s Hospital.

3. INSTANTANEOUS STATISTICAL
DIMENSION

In the case of nonstationary signals such as the EEG,
an adaptive scheme has been proposed to recursively
compute the eigenvalue spectrum A;, for ¢ =1,... ng,
of the autocovariance matrix R, (k, 7) = E[z(k)xz(k +
7)] of a digital signal xz(k) [5]. It uses linear neural
networks with Hebbian learning rule to estimate the
eigenvectors and eigenvalues. The output y;(k) of the
neural network at the node 7 at time k is, with input
vectors x(k) = xj, = [w())z(i + 1) ...x(i +ns — 1T

yici(k) = [pi(k)...pi_ (k)] x(k)
yi(k) = pi (k) x(k) + W] yi_i(k) (1)

the MA weight vector is pl' (k) = [pi1 ... pin,], the AR
weight vector is W (k) = [w;1 ... w;—1], and the out-
put is yZ (k) = [y1...y;]. From equation (1) we can
see that p;; is the weight connecting input z(k + 7) to
the output y;, and that w;; is the internal weight that
connect the output y; to the output y;. Note also that
the network architecture is nonsymmetrical at the out-
put layer W. The update rule for the weights p;(k)
and W (k) is the following

Apf (k) = B {(yilk) x(k) =y (k) pi(K))}  (2)
AW (k) = =B (yi(k) yi-1(k) + 7 (k) Wi(k))
The learning rate is controlled by g which can be es-

timated off-line by # = min;{1/A;}, or on-line by the
following recursion formula

Bk) = Bk —1)/ (v + Bk — 1) y7 (k) 3)

Using equation (3) allows us to have an adaptive step
size for each node ¢ in the network. In a stationary
environment, the output y? (k) is a stochastic estimate
of the eigenvalue A;. It is expected that for a nonsta-
tionary signal z(k), the output y?(k) will follow the
time-variation of the ith eigenvalue of R, (k,T) with
some fluctuations around the true eigenvalues due to
the stochastic nature of the input signal z(k).

Definition: The instantaneous statistical dimen-
sion m(k,T) of the time series x(k) at time k for a
window length T is given by

m(k,T)=arg min > (k),i) (4

MDL(y
€{l,...,ns
where 72 (k) = (1/T) Z5H% y2(j) and §2_ (k) =
[Wi(k),. ..,y (k)]T . The minimum description length
[2] MDL(A(K), i) depends on the values ¥2 (k) at the
time instant k. The MDL function also depends on the
number of samples Ny = maz{1/1 — v,T} taken into
account in the adaptive algorithm.
Note that we average the outpout power 77 (k) over
a symmetric time interval about k. The time averaged
instantaneous embedding dimension m(k,T) depends
on the time location k and also on the window size T'.
While it has been shown that there is no simple
relation between m(k,T") and the dimension of the un-
derlying dynamical system, m(k,T) provides us with
the following informations: 1) if m(k,T) > mny, the
signal contains a nonstochastic activity of high dimen-
sion. This could reflects asynchronous behaviour of the
brain neurons. If 1 < m(k,T) < ny, the signal con-
tains a nonstochastic activity of low dimension. This
is typical from synchronous activity of the neurons.

4. CONDITIONAL RENYI ENTROPIES

An interesting attempt to measure the information con-
tent in time-varying signal «(t) has been made in [3, 4].
They introduced the Rényi entropies HZ(C'(t, f)) of
time-frequency distributions (TFD) of Cohen’s class
C(t, f) assuming a probability density function (pdf)
interpretation of C(t, f). They show that HJ(EEC’)(C(t, )
actually count the number of component in a signal.
Unfortunately, we loose the time location aspect when
we compute the scalar value Hl(qa)(C(t,f)). We thus
define the conditional Rényi entropies of a normalized
TFD which allows to introduce instantaneous Rényi
entropies and thus a time-varying component count-
ing property. Let us first define the conditional pdf



C(f|t) = C(t, f)/C(t) where C(t) = [C(t, f) df. The
conditional Rényi entropies for a > 0 is

(e} ]‘ (e
HY (1) = 7= 1os, [ Co(0 &F - ()
Note that H'*(C(f|t)) — Hs(C(f[t)) which is, by
definition, the conditional Shannon entropy. We can
recover the entropy Hl(qa) (C(t, f)) by

a 1 —a)H®) o
Hl(q )(C(t,f)) s 10g2/2(1 VHC(F1t) ¢ (t) df

(6)
The Rényi entropies H'™ (C(t, £)) and H\® (C(f]t))
have units of bits. The Shannon entropy can be com-
puted Hs(C(t,f)) = HY 7V (C(t, ). The entropies
Hl(qa)(C(f|t)) depends on the time which makes them
suitable for defining time-varying complexity measures.
Suitable values for alpha are small odd integer [4] such
as a = 3.

5. NUMERICAL EXAMPLES

In order to validate our two time-varying complexity

measure and assess their time varying component count-
ing properties, we construct the following signal x(t) =

@1 (8)+32 () +n(t) where z;(t) = sin(w;(t)t)e=¢=t)*/277
wi(t) = 27r(fi(°) + a;t), and n(t) is a Gaussian White

noise. In the following we have t; = 10s, to = 125, 71 =

6s, v» = 3s, f19 = 2Hz, f9 = 3Hz, ay = 0.15572,

az = 0.2572. The signal contains 1 component up to
about 10s and then one more component is added. The
TFD used in these examples is the spectrogram, and
Figure 1 shows the spectrogram of the signal x(t) to-
gether with the two components.

Spectrogrmm, nfft=421 Hanning window with length=105
pectiog:
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Figure 1: Spectrogram of z(t) for SNR = 100dB. Time
signal and power spectral density functions are displayed on
left and bottom of the figure. Sampling frequency, window
type and window length are aslo displayed on the figure.

Three examples are displayed in Figure 2, using
SNR = 100,20,10dB. We observe that, for SNR =

100dB, Hl(qa) (C(f]t)) increases by 1 bit as the signal
move from 1 to 2 components. We also observe the bor-
der effects that are due to numerical implementation of
the spectrogram. The slow transition around 10s is due
to the time-spreading effect in using the spectrogram.
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Figure 2: Conditional Rényi entropies and ISD for SNR =
100dB (solid lines), SNR = 20dB (dotted-dashed lines),
and SNR = 10dB (dotted lines)

Figure 2 shows the great robustness against noise
(at least Gaussian white noise) for the ISD. Moreover,
the transition region around the 10s is very short. The
algorithm show very fast convergence for all SNR. The
component counting property is illustrated in these ex-
amples.

One crutial distinction between entropy- and ISD-
based complexity measures is the influence of noise. As
Hl(qa)(C(f|t)) is computed from a TFD of the noisy sig-
nal, this quantity will be highly affected by the later
because the noise spread its power in frequency by
essence. On the other hand, the ISD measure tend to
dissociate the deterministic from the stochastic compo-
nents and provide a complexity measure of, essentially,
the derterministic part. This will be further illustrated
in the next section.

6. EXPERIMENTAL RESULTS

The two major biosignal processing applications are
detection (or segmentation) and feature extraction for
classification and diagnosis. The goal of designing these
time-varying complexity measures follows exactely these
two directions when dealing with nonstationary signals.
First the set of values of the entropies and the ISD can
be used in their own as features of the EEG signal. Sec-
ond, using thresholding methods we can use them to
segment the EEG. All the figures 3 to 5 shows the ISD
(dotted-dashed lines) and H\"=* (C(f|t)) (solid lines).
Figure 3 shows a similar decreasing behavior of both
complexity measures.

Figure 4 shows an almost constant conditional en-
tropy, while ISD display clearely large fluctuations when
EEG rhytms take place. Still, carefull observation of
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Figure 3: ISD and H=> (C(f|t)) of one EEG channel

both measures reveal some positive correlations. In this
figure, ISD increased during the main ictal segments.
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Figure 4: ISD and H"=* (C(f|t)) of one EEG channel

Figure 5 displays a quite constant Hgl:B) (C(fIt),
while ISD varies considerably when EEG rhytmical ac-
tivity take place. In this figure, the ISD tends to de-
crease during the ictal segments while increases in the
inter-ictal ones. This does not contradict the two pre-
vious results, but simply emphasize the fact that ISD
provide a complexity measure of the deterministic part
of the signals.
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Time [sec]

Figure 5: ISD and H"=> (C(f|t)) of one EEG channel

7. CONCLUSIONS

Physiological measurement such as EEG display some
nonstationary behaviour. In order to characterize such

nonstationary mixture of deterministic and stochastic
behaviour, we have developed two time-varying com-
plexity measures. The first one is based on eigen-
value tracking and the second one derived from the
generalised conditional Rényi entropies. While sharing
the same component counting properties, the ISD re-
vealed to be more robust in noisy measurements such
as EEG signals. It is expected that these new concepts
will leads to new and interesting tools for the analy-
sis of nonstationary time series. Especially in the case
of noisy measurements, MDL selection rule has been
shown to perform well in extracting relevant features
in the signal. Experimental analysis of EEG signals
has been performed and the time-varying complexity
analysis reveals some interesting insight into the brain
function.
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